Ensamblando el embrión de la biología del desarrollo en Uruguay

Palabras clave: historia de la ciencia, ciencia en Latinoamérica, citología, embriología

Resumen

En Uruguay, un país con una población pequeña y, por tanto, una pequeña comunidad científica, no existieron embriólogos clásicos como tales en el pasado. A partir de la década de 1950, sin embargo, un cúmulo de condiciones favorables dio lugar a grupos de investigación muy activos y modernos en los campos de la citología y la fisiología, que eventualmente contribuyeron a la biología del desarrollo. El advenimiento de una larga dictadura entre los años setenta y ochenta provocó dos cosas: un fuerte rezago en la investigación local y la migración de jóvenes investigadores que aprendieron en el extranjero nuevas disciplinas y tecnologías. El retorno a la democracia permitió el regreso de algunos, ahora como investigadores sólidos, y junto con los que se quedaron, construyeron un programa de formación de posgrado previamente inexistente yuna academia globalmente integrada que fomentó la diversidad de disciplinas de investigación, incluida la biología del desarrollo. En el presente trabajo destacamos el aporte clave de investigadores pioneros y el importante papel que jugaron las instituciones académicas y financiadoras nacionales en el crecimiento y consolidación de la biología del desarrollo en nuestro país. 

Descargas

La descarga de datos todavía no está disponible.

Citas

Aparicio, G., Arruti, C., & Zolessi, F. R. (2018). MARCKS phosphorylation by PKC strongly impairs cell polarity in the chick neural plate. Genesis, 56(4),
e23104. https://doi.org/10.1002/dvg.23104

Arezo, M. J., Papa, N. G., Berois, N., Clivio, G.,Montagne, J., & De la Piedra, S. (2017). Annual killifish adaptations to ephemeral environments:
Diapause I in two Austrolebias species.Developmental Dynamics, 246(11), 848–857.https://doi.org/10.1002/dvdy.24580

Arezo, M. J., Papa, N., Guttierrez, V., García, G., & Berois, N. (2014). Sex determination in annual fishes: Searching for the master sex-determining
gene in Austrolebias charrua (Cyprinodontiformes, Rivulidae). Genetics and Molecular Biology,37(2), 364–374. https://doi.org/10.1590/S1415-
47572014005000009

Arruti, C., & Courtois, Y. (1978). Morphological changes and growth stimulation of Bovine Epithelial Lens cells by a retinal extract in vitro. Experimental Cell Research, 117(2), 283–292. https://doi.org/10.1016/0014-4827(78)90142-8

Benavente, R., & Wettstein, R. (1977). An ultrastructural cytogenetic study on the evolution of sex chromosomes during the spermatogenesis of
Lycosa malitiosa (Arachnida). Chromosoma, 64(3), 255–277. https://doi.org/10.1007/BF00328081

Beretta Curi, A. (2006). Roberto Caldeyro Barcia: el mandato de una vocación. PEDECIBA/Ediciones Trilce.

Bolatto, C., Parada, C., Revello, F., Zuñiga, A., Cabrera, P., & Cambiazo, V. (2015). Spatial and temporal distribution of Patched-related protein in the
Drosophila embryo. Gene Expression Patterns,19(1–2), 120–128. https://doi.org/10.1016/j.gep.2015.10.002

Brauer, M. (2016). Plasticity in Uterine Innervation: State of the Art. Current Protein & Peptide Science,18(2), 108–119. https://doi.org/10.2174/1389203717666160322145411

Buño, W., & Goyena, H. (1955). Effect of cortisone upon growth in vitro of femur of the chick embryo.Proceedings of the Society for Experimental
Biology and Medicine, 89(4), 622–625. https://doi.org/10.3181/00379727-89-21896

Calcagno, M., Goyena, H., Arrambide, E., & Arruti de Urse, C. (1970). Action of cortisone and cortisol upon biosynthesis of chondroitin sulfate in femur
in vitro cultures of chick embryo. Experimental Cell Research, 63(1), 131–137. https://doi.org/10.1016/0014-4827(70)90340-X

Caldeyro‐Barcia, R., & Poseiro, J. J. (1959). Oxytocin and contractility of the pregnant human uterus. Annalsof the New York Academy of Sciences, 75(2), 813–830. https://doi.org/10.1111/j.1749-6632.1959.tb44593.x

Campos Muñoz, A. (2013). Eduardo de Robertis. En el centenario de su nacimiento (1913-2013).Actualidad Médica, 790, 167–170. https://
actualidadmedica.es/articulo/790_hca01

Cantera, R., Ferreiro, M. J., Aransay, A. M., & Barrio,R. (2014). Global gene expression shift during the transition from early neural development
to late neuronal differentiation in Drosophila melanogaster. PLoS ONE, 9(5), e97703. https://doi.org/10.1371/journal.pone.0097703

Castellano, M. A., Tórtora, J. L., Germino, N. I., Rama,F., & Ohanian, C. (1973). The effects of isonicotinic acid hydrazide on the early chick embryo. Journal of Embryology and Experimental Morphology,29(1), 209–219. https://doi.org/10.1242/dev.29.1.209

Castellano, Miguel A., Germino, N. I., Berois de Haro, N., & Gerard, G. (1969). Histochemical demonstration of l-amino acid-tetrazolium
reductase. Histochemie, 18(3), 277–280. https://doi.org/10.1007/BF00306174

Chalar, C., Martínez, C., Brauer, M. M., Ehrlich, R., & Marín, M. (2016). Eghbx2, a homeobox gene involved in the maturation of calcified structures
in Echinococcus granulosus. Gene Reports, 3, 39–46. https://doi.org/10.1016/j.genrep.2016.02.001

Chávez-Genaro, R., & Anesetti, G. (2018). First ovarian response to gonadotrophin stimulation in rats exposed to neonatal androgen excess. Journal of
Molecular Histology, 49(6), 631–637. https://doi.org/10.1007/s10735-018-9800-5

Cirillo, A., Arruti, C., Courtois, Y., & Jeanny, J. C. (1990). Localization of basic fibroblast growth factor binding sites in the chick embryonic neural retina.
Differentiation, 45(3), 161–167. https://doi.org/10.1111/j.1432-0436.1990.tb00469.x

De Anda, G., & Rebollo, M. A. (1968). Histochemistry of the neuromuscular spindles in the chicken during development. Acta Histochemica, 31(2), 287–295.
de Maria, A., & Arruti, C. (1995). α-crystallin polypeptides in developing chicken lens cells. Experimental Eye Research, 61(2), 181–187.
https://doi.org/10.1016/S0014-4835(05)80038-7

De Robertis, E. (1956). Morphogenesis of the retinal rods; an electron microscope study. The Journal of Biophysical and Biochemical Cytology, 2(4, Suppl), 209–218. https://doi.org/10.1083/jcb.2.4.209

Domínguez, R., Carlevaro, E., & Buño, W. (1968).Evolution of ovarian grafts in male guinea-pigs castrated the first day of life. Experientia, 24(5),
459–460. https://doi.org/10.1007/BF02144390

Drets, M. E. (2013). Francisco Alberto Sáez - Primer citogenetista de América Latina. DIRAC, Facultad de Ciencias.

Estable, C., Acosta-Ferreira, W., & Sotelo, J. R. (1957). An electron microscope study of the regenerating nerve fibers. Zeitschrift Für Zellforschung Und
Mikroskopische Anatomie, 46(4), 387–399.https://doi.org/10.1007/BF00345052

Esteves, A., Dallagiovanna, B., & Ehrlich, R. (1993). A developmentally regulated gene of Echinococcus granulosus codes for a 15.5-kilodalton polypeptide related to fatty acid binding proteins. Molecular and Biochemical Parasitology, 58(2), 215–222.
https://doi.org/10.1016/0166-6851(93)90043-W

Fabbiani, G., Reali, C., Valentín-Kahan, A., Rehermann, M. I., Fagetti, J., Falco, M. V., & Russo, R. E. (2020). Connexin signaling is involved in the
reactivation of a latent stem cell niche after spinal cord injury. Journal of Neuroscience, 40(10), 2246–2258. https://doi.org/10.1523/
JNEUROSCI.2056-19.2020

Fabbiani, G., Rehermann, M. I., Aldecosea, C., TrujilloCenóz, O., & Russo, R. E. (2018). Emergence of serotonergic neurons after spinal cord injury in
turtles. Frontiers in Neural Circuits, 12, 20. https://doi.org/10.3389/fncir.2018.00020

Garcia-Austt, E. (1954). Development of electrical activity in cerebral hemispheres of the chick embryo. Proceedings of the Society for
Experimental Biology and Medicine, 86(2), 348–352. https://doi.org/10.3181/00379727-86-21095

Lepanto, P., Davison, C., Casanova, G., Badano, J. L., & Zolessi, F. R. (2016). Characterization of primary cilia during the differentiation of retinal ganglion cells in the zebrafish. Neural Development, 11(1),10. https://doi.org/10.1186/s13064-016-0064-z

López, L., Zuluaga, M. J., Lagos, P., Agrati, D., & Bedó, G. (2018). The expression of Hypoxia-Induced Gene 1 (Higd1a) in the central nervous system of male and female rats differs according to age. Journal of Molecular Neuroscience, 66(3), 462–473. https://
doi.org/10.1007/s12031-018-1195-y

Martínez, C., Chalar, C., González, J., & Ehrlich, R. (1997). The homeobox-containing gene EgHbx3 from Echinococcus granulosus is expressed in
the stalk of protoscoleces. International Journal for Parasitology, 27(11), 1379–1381. https://doi.org/10.1016/S0020-7519(97)00082-9

Melamed, J., & Trujillo-Cenóz, O. (1975). The fine structure of the eye imaginal disks in muscoid flies. Journal of Ultrastructure Research, 51(1), 79–93.
https://doi.org/10.1016/S0022-5320(75)80010-4

Micucci, M., Rama, F., Castellano, M. A., & Germino, N. I. (1971). The histochemical distribution of fructose metabolism enzymes in bovine
spermatogenesis. Journal of Anatomy, 109(2),209–214. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1271001

Montagne, J., Preza, M., Castillo, E., Brehm, K., & Koziol,U. (2019). Divergent Axin and GSK-3 paralogs in the beta-catenin destruction complexes of
tapeworms. Development Genes and Evolution, 229(4), 89–102. https://doi.org/10.1007/s00427-019-00632-w

Oliver, G., Vispo, M., Mailhos, A., Martínez, C., SosaPineda, B., Fielitz, W., & Ehrlich, R. (1992). Homeoboxes in flatworms. Gene, 121(2), 337–342.
https://doi.org/10.1016/0378-1119(92)90140-K

Olivera-Pasilio, V., Lasserre, M., & Castelló, M.E. (2017). Cell proliferation, migration, and neurogenesis in the adult brain of the pulse
type weakly electric fish, Gymnotus omarorum. Frontiers in Neuroscience, 11(AUG), 437. https://doi.org/10.3389/fnins.2017.00437

Pazos Obregón, F., Palazzo, M., Soto, P., Guerberoff,G., Yankilevich, P., & Cantera, R. (2019). An improved catalogue of putative synaptic genes
defined exclusively by temporal transcription profiles through an ensemble machine learning approach. BMC Genomics, 20(1), 1011. https://
doi.org/10.1186/s12864-019-6380-z

Pellegrino, V., Klimavicius, S., Vique, M. I., & Varela, G. (Eds.). (2017). Científicos uruguayos: destacadas contribuciones al conocimiento biológico durante los siglos XIX y XX. Grupo Magro Editores. http://repositorio.cfe.edu.uy/handle/123456789/993

Preza, M., Montagne, J., Costábile, A., Iriarte, A., Castillo, E., & Koziol, U. (2018). Analysis of classical neurotransmitter markers in tapeworms: Evidence
for extensive loss of neurotransmitter pathways. International Journal for Parasitology, 48(13), 979–992. https://doi.org/10.1016/j.ijpara.2018.06.004

Richeri, A., Vierci, G., Martínez, G. F., Latorre, M. P., Chalar, C., & Brauer, M. M. (2020). Neuropilin-1 receptor in the rapid and selective estrogeninduced neurovascular remodeling of rat uterus. Cell and Tissue Research, 381(2), 299–308. https://doi.org/10.1007/s00441-020-03196-8

Silva, C. C., & Domínguez, R. (2020). Clock control of mammalian reproductive cycles: Looking beyond the pre-ovulatory surge of gonadotropins. In
Reviews in Endocrine and Metabolic Disorders (Vol. 21, Issue 1, pp. 149–163). Springer. https://doi.org/10.1007/s11154-019-09525-9

Sotelo, J. R. (1959). An electron microscope study on the cytoplasmic and nuclear components of rat primary oocytes. Zeitschrift Für Zellforschung
Und Mikroskopische Anatomie, 50(6), 749–765. https://doi.org/10.1007/BF00342364

Sotelo, J. R., & Trujillo-Cenóz, O. (1958). Electron microscope study on the development of ciliary components of the neural epithelium of the
chick embryo. Zeitschrift Für Zellforschung Und Mikroskopische Anatomie, 49(1), 1–12. https://doi.org/10.1007/BF00335059

Sotelo, J. R., & Trujillo-Cenóz, O. (1960). Electron microscope study on spermatogenesis -Chromosome morphogenesis at the onset of
meiosis (cyte I) and nuclear structure of early and late spermatids. Zeitschrift Für Zellforschung Und Mikroskopische Anatomie, 51(3), 243–277.
https://doi.org/10.1007/BF00339968

Sotelo, J. R., & Wettstein, R. (1964). Electron microscope study on meiosis - The sex chromosome in spermatocytes, spermatids and oocytes of Gryllus
argentinus. Chromosoma, 15(4), 389–415. https://doi.org/10.1007/BF00368139

Spindler, M. C., Filbeck, S., Stigloher, C., & Benavente, R. (2019). Quantitative basis of meiotic chromosome synapsis analyzed by electron tomography.
Scientific Reports, 9(1), 16102. https://doi.org/10.1038/s41598-019-52455-4

Torres-Pérez, M., Rosillo, J. C., Berrosteguieta, I., Olivera-Bravo, S., Casanova, G., García-Verdugo, J. M., & Fernández, A. S. (2017). Stem cells
distribution, cellular proliferation and migration in the adult Austrolebias charrua brain. Brain Research, 1673, 11–22. https://doi.org/10.1016/j.
brainres.2017.08.003

Trovero, M. F., Rodríguez-Casuriaga, R., Romeo, C., Santiñaque, F. F., François, M., Folle, G. A., Benavente, R., Sotelo-Silveira, J. R., & Geisinger,A. (2020). Revealing stage-specific expression patterns of long noncoding RNAs along mouse spermatogenesis. RNA Biology, 17(3), 350–365.
https://doi.org/10.1080/15476286.2019.1700332

Trujillo-Cenóz, O., & Melamed, J. (1978). Development of photoreceptor patterns in the compound eyes of muscoid flies. Journal of Ultrastructure
Research, 64(1), 46–62. https://doi.org/10.1016/S0022-5320(78)90006-0

Vázquez-Nin, G. H., & Sotelo, J. R. (1968). Electron microscope study of the developing nerve terminals in the acoustic organs of the chick
embryo. Zeitschrift Für Zellforschung Und Mikroskopische Anatomie, 92(3), 325–338.https://doi.org/10.1007/BF00455590

Vierci, G., Pannunzio, B., Bornia, N., & Rossi, F. M. (2016). H3 and H4 lysine acetylation correlates with developmental and experimentally induced
adult experience-dependent plasticity in the mouse visual cortex. Journal of Experimental Neuroscience, 2016, 49–64. https://doi.
org/10.4137/JEN.S39888

Vizziano-Cantonnet, D., Di Landro, S., Lasalle, A., Martínez, A., Mazzoni, T. S., & Quagio-Grassiotto, I. (2016). Identification of the molecular sexdifferentiation period in the siberian sturgeon. Molecular Reproduction and Development, 83(1),19–36. https://doi.org/10.1002/mrd.22589

Wettstein, R., & Sotelo, J. R. (1967). Electron microscope serial reconstruction of spermatocyte nuclei at pachytene. J. Microscopie, 6, 557–576.
Zolessi, F. R., & Arruti, C. (2001). Sustained phosphorylation of MARCKS in differentiating neurogenic regions during chick embryo
development. Brain Research. Developmental Brain Research, 130(2), 257–267. https://doi.org/10.1016/S0165-3806(01)00251-6
Publicado
2021-10-09
Cómo citar
Zolessi, F., Berois, N., Brauer, M. M., & Castillo, E. (2021). Ensamblando el embrión de la biología del desarrollo en Uruguay. Educación En Ciencias Biológicas, 6(2), eRECB.6.2.5. https://doi.org/10.36861/RECB.6.2.5